The Dosimetric Effects of Different Multileaf Collimator Widths on Physical Dose Distributions

نویسندگان

  • Ehab M. Attalla
  • Ismail Eldesoky
چکیده

Article type: Original Article Introduction: Geometric changes in the multileaf collimator (MLC) led to dosimetric considerations in intensity-modulated radiation therapy (IMRT) due to the number and size of the pixels in the intensity map, which are determined by the MLC leaf width. In this study, we evaluated the dosimetric effects of different MLC widths on physical dose distributions for IMRT plans. Materials and Methods: Forty-two IMRT plans based on different MLC devices were generated and analyzed to study the effect of MLC width on plan quality. Results: Improvements in IMRT plan quality using 0.4 cm leaf width in comparison with 1 cm leaf width were evaluated. The 0.4 cm leaf-based plans resulted in significantly higher Dmean, D98%, D95% , D5%, and V95 (58.86 Gy, 95.11%, 96.57%, 104%, and 97.92%, respectively) compared to the 1 cm leaf plans (58.66 Gy, 92.56%, 94.56%, 104.14%, and 95.72%, respectively). Conformation number (CN) for planning target volume in 0.4 cm leaf plans was significantly higher than the 1 cm leaf plans (0.74 vs. 0.67; P<0.05). In addition, the 0.4 cm leaf plans significantly improved dose homogeneity compared to the 1 cm leaf plans (1.08 vs. 1.10; P<0.05). We found that 0.4 cm leaf width significantly decreased the integral dose to normal tissue compared to the 1 cm leaf width (from 56.09 to 49.46 Gy.Kg P<0.05). Conclusion: No significant clinical differences were observed between the two plans for a serially functioning tissue, while the differences in mean doses were statistically significant for parallel functioning normal tissues. Article history: Received: Nov 10, 2016 Accepted: Sep 12, 2017

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dosimetric Effects of Different Multileaf Collimator Widths on Physical Dose Distributions

Introduction: Geometric changes in the multileaf collimator (MLC) led to dosimetric considerations in intensity-modulated radiation therapy (IMRT) due to the number and size of the pixels in the intensity map, which are determined by the MLC leaf width. In this study, we evaluated the dosimetric effects of different MLC widths on physical dose distributions for IMRT plans. Materials and Method...

متن کامل

Beam characteristic of P.E collimators Add-on multileaf collimator

  Introduction:    Multileaf collimators (MLCs) are computer-controlled devices which are Useful and cost-effective tools for conformal therapy and intensity modulation radiotherapy (IMRT). Nowadays MLCs are important and standard configuration of the new medical linear accelerators which are substitute of conventional Blocks and has eliminated the ...

متن کامل

Physical and Dosimetric Aspect of Euromechanics Add-on Multileaf Collimator on Varian Clinac 2100 C/D

Background: Before treatment planning and dose delivery, quality assurance of multi-leaf collimator (MLC) has an important role in intensity-modulated radiation therapy (IMRT) due to the creation of multiple segments from optimization process.Objective: The purpose of this study is to assess the quality control of MLC leaves using EBT3 Gafchromic films.Material and Methods: Leaf Position accur...

متن کامل

Monte Carlo Study of Unflattened Photon Beams Shaped by Multileaf Collimator

Introduction: This study investigates basic dosimetric properties of unflattened 6 MV photon beam shaped by multileaf collimator and compares them with those of flattened beams.Materials and Methods: Monte Carlo simulation model using BEAM code was developed for a 6MV photon beam based on Varian Clinic 600 unique performance linac operated with and without a flattening filter in beam line. Dosi...

متن کامل

Dosimetric impact of geometric errors due to respiratory motion prediction on dynamic multileaf collimator-based four-dimensional radiation delivery.

The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018